๐ŸŒŒ
Privacy Village Academy
Join The Community!AcademyAbout HGPE
  • Hitchhiker's Guide to Privacy Engineering
    • โ“What is HGPE?
      • โš–๏ธWho is this for?
      • ๐Ÿง™โ€โ™‚๏ธPrivacy Engineering
      • ๐ŸŽจCreative Privacy
      • ๐Ÿ”ฎGenerative AI
      • ๐Ÿง‘โ€๐Ÿ’ปAbout the Author
  • ๐Ÿง™โ€โ™‚๏ธThe Ethical AI Governance Playbook 2025 Edition
    • ๐Ÿค–Chapter 1 : AI Literacy
    • ๐ŸŒChapter 2 : AI Governance in the 21st Century
    • โŒ›Chapter 3 - Getting Started with AI Act Compliance
    • ๐Ÿš€Chapter 4 : Rise of AI Governance: Building Ethical & Compliant AI
    • Chapter 5 : Introduction to the Lifecycle of AI
  • ๐ŸŽ“Privacy Engineering Field Guide Season 1
    • โ“Decoding the Digital World: Exploring Everyday Technology
    • ๐Ÿ‘๏ธIntroduction: Why Privacy Matters?
      • Age of Mass Surveillance
      • Privacy & Democracy
      • Privacy & Government Surveillance
    • โšกChapter 1 : How Computers Work?
      • Electricity
      • Bits
      • Logic Gates
      • Central Processing Unit (CPU)
      • Graphic Processing Unit (GPU)
      • Motherboard
      • Data Storage
      • Databases
      • Operating System (OS)
      • Computer Code
      • Programming Languages
      • The File System
      • Bugs and Errors
      • Computer Virus
      • Internet of Things (IoT)
      • Cloud Computing
    • ๐Ÿ›ฐ๏ธChapter 2 : How the internet works?
      • Physical Infrastructure
      • Network and Protocols
      • Switch
      • Routers
      • IP Address
      • Domain Name System (DNS)
      • Mac Address
      • TCP / IP
      • OSI Model
      • Packets
      • The Client - Server Architecture
      • Secure Socket Shell (SSH)
      • Transport Layer Security (TLS)
      • Firewall
      • Tunnels and VPNs
      • Proxy Server
    • ๐Ÿ–ฅ๏ธChapter 3 : How Websites Work?
      • HTML
      • CSS
      • Javascript
      • Web Server
      • Browser
      • HTTP
      • Databases
      • Front End (Client Side)
      • Back End (Server Side)
      • Cookies
      • Local Storage
      • Session Storage
      • IndexedDB
      • XHR Requests
      • Web APIs
      • Webhooks
      • Email Server
      • HTTPS
      • Web Application Firewall
      • Single Sign-on (SS0)
      • OAuth 2.0
      • Pixels
      • Canvas Fingerprinting
      • Email Tracking
      • Containers
      • CI/CD
      • Kubernetes
      • Serverless Architecture
    • โš›๏ธChapter 4 : How Quantum Computers Work?
      • Quantum Properties
      • Quantum Bits (Qubits)
      • Decoherence
      • Quantum Circuits
      • Quantum Algorithms
      • Quantum Sensing
      • Post-Quantum Cryptography
    • ๐Ÿ“ณChapter 5 : Mobile Apps and Privacy
      • Battery
      • Processor
      • Mobile Operating Systems
      • Mobile Data Storage
      • Cellular Data
      • Mobile Device Sensors
      • Wireless Connectivity
      • Camera & Microphone
      • Mobile Apps
      • Software Development Kits (SDKs)
      • Mobile Device Identifiers
      • Bring Your Own Device (BYOD)
  • ๐Ÿ•ต๏ธโ€โ™‚๏ธPrivacy Engineering Field Guide Season 2
    • โ“Introduction to Privacy Engineering for Non-Techs
      • ๐ŸŽญChapter 1 : Digital Identities
        • What is identity?
        • Authentication Flows
        • Authentication vs. Authorization
        • OAuth 2.0
        • OpenID Connect (OIDC)
        • Self Sovereign Identities
        • Decentralized Identifiers
        • eIDAS
      • ๐Ÿ‘๏ธโ€๐Ÿ—จ๏ธChapter 2 : De-Identification
        • Introduction to De-Identification?
        • Input / Output Privacy
        • De-identification Strategies
        • K-Anonymity
        • Differential Privacy
        • Privacy Threat Modeling
  • ๐Ÿ“–HGPE Story and Lore
    • ๐ŸชฆChapter 1 : The Prologue
    • โ˜„๏ธChapter 2 : Battle for Earth
    • ๐Ÿฆ Chapter 3 : A Nightmare To Remember
    • ๐Ÿง™โ€โ™‚๏ธChapter 4 : The Academy
    • ๐ŸŒƒChapter 5: The Approaching Darkness
    • โš”๏ธChapter 6 : The Invasion
    • ๐ŸฐChapter 7 : The Fall of the Academy
    • ๐Ÿ›ฉ๏ธChapter 8 : The Escape
    • ๐ŸชChapter 9 : The Moon Cave
    • ๐Ÿฆ‡Chapter 10: Queen of Darkness
  • ๐Ÿ“บVideos, Audio Book and Soundtracks
    • ๐ŸŽงReading Episodes
    • ๐ŸŽนSoundtracks
  • ๐Ÿ‘พHGPE Privacy Games and Challenges
    • ๐ŸŽฎData Privacy Day'23 / Privacy Treasure Hunt Game
    • ๐ŸงฉPrivacy Quest
  • ๐Ÿ“ฌSubscribe Now!
Powered by GitBook
On this page

Was this helpful?

  1. Privacy Engineering Field Guide Season 2
  2. Introduction to Privacy Engineering for Non-Techs
  3. Chapter 2 : De-Identification

Input / Output Privacy

What is the difference? ๐Ÿ‘€

Input Privacy:

Input privacy is a way of protecting data when different parties are sharing it for calculations or analysis. It ensures that each party can submit their data without revealing it to others. The goal is to keep everyoneโ€™s data private while still being able to work together on a common task.

Cryptographic protocols like Secure Multi-Party Computation (sMPC), Trusted Execution Environments (TEEs) and Homomorphic Encryption (HE) use encryption to perform calculations on sensitive input data.

๐Ÿ’ก Tip: While offering theoretical guarantees, these PETs can be computationally expensive, especially with large datasets.

Output Privacy:

Output privacy, on the other hand, ensures that data shared outside the organization is protected from re-identification and misuse.

Output privacy lets you control what information you share with others. Just like you want to keep some details private when talking to friends, output privacy ensures certain information remains hidden in data analysis or sharing.

Techniques such as data masking, anonymization, and differential privacy help remove or obfuscate sensitive information while maintaining data utility for analysis.

PreviousIntroduction to De-Identification?NextDe-identification Strategies

Last updated 1 year ago

Was this helpful?

๐Ÿ•ต๏ธโ€โ™‚๏ธ
โ“
๐Ÿ‘๏ธโ€๐Ÿ—จ๏ธ
Page cover image