๐ŸŒŒ
Privacy Village Academy
Join The Community!AcademyAbout HGPE
  • Hitchhiker's Guide to Privacy Engineering
    • โ“What is HGPE?
      • โš–๏ธWho is this for?
      • ๐Ÿง™โ€โ™‚๏ธPrivacy Engineering
      • ๐ŸŽจCreative Privacy
      • ๐Ÿ”ฎGenerative AI
      • ๐Ÿง‘โ€๐Ÿ’ปAbout the Author
  • ๐Ÿง™โ€โ™‚๏ธThe Ethical AI Governance Playbook 2025 Edition
    • ๐Ÿค–Chapter 1 : AI Literacy
    • ๐ŸŒChapter 2 : AI Governance in the 21st Century
    • โŒ›Chapter 3 - Getting Started with AI Act Compliance
    • ๐Ÿš€Chapter 4 : Rise of AI Governance: Building Ethical & Compliant AI
    • Chapter 5 : Introduction to the Lifecycle of AI
  • ๐ŸŽ“Privacy Engineering Field Guide Season 1
    • โ“Decoding the Digital World: Exploring Everyday Technology
    • ๐Ÿ‘๏ธIntroduction: Why Privacy Matters?
      • Age of Mass Surveillance
      • Privacy & Democracy
      • Privacy & Government Surveillance
    • โšกChapter 1 : How Computers Work?
      • Electricity
      • Bits
      • Logic Gates
      • Central Processing Unit (CPU)
      • Graphic Processing Unit (GPU)
      • Motherboard
      • Data Storage
      • Databases
      • Operating System (OS)
      • Computer Code
      • Programming Languages
      • The File System
      • Bugs and Errors
      • Computer Virus
      • Internet of Things (IoT)
      • Cloud Computing
    • ๐Ÿ›ฐ๏ธChapter 2 : How the internet works?
      • Physical Infrastructure
      • Network and Protocols
      • Switch
      • Routers
      • IP Address
      • Domain Name System (DNS)
      • Mac Address
      • TCP / IP
      • OSI Model
      • Packets
      • The Client - Server Architecture
      • Secure Socket Shell (SSH)
      • Transport Layer Security (TLS)
      • Firewall
      • Tunnels and VPNs
      • Proxy Server
    • ๐Ÿ–ฅ๏ธChapter 3 : How Websites Work?
      • HTML
      • CSS
      • Javascript
      • Web Server
      • Browser
      • HTTP
      • Databases
      • Front End (Client Side)
      • Back End (Server Side)
      • Cookies
      • Local Storage
      • Session Storage
      • IndexedDB
      • XHR Requests
      • Web APIs
      • Webhooks
      • Email Server
      • HTTPS
      • Web Application Firewall
      • Single Sign-on (SS0)
      • OAuth 2.0
      • Pixels
      • Canvas Fingerprinting
      • Email Tracking
      • Containers
      • CI/CD
      • Kubernetes
      • Serverless Architecture
    • โš›๏ธChapter 4 : How Quantum Computers Work?
      • Quantum Properties
      • Quantum Bits (Qubits)
      • Decoherence
      • Quantum Circuits
      • Quantum Algorithms
      • Quantum Sensing
      • Post-Quantum Cryptography
    • ๐Ÿ“ณChapter 5 : Mobile Apps and Privacy
      • Battery
      • Processor
      • Mobile Operating Systems
      • Mobile Data Storage
      • Cellular Data
      • Mobile Device Sensors
      • Wireless Connectivity
      • Camera & Microphone
      • Mobile Apps
      • Software Development Kits (SDKs)
      • Mobile Device Identifiers
      • Bring Your Own Device (BYOD)
  • ๐Ÿ•ต๏ธโ€โ™‚๏ธPrivacy Engineering Field Guide Season 2
    • โ“Introduction to Privacy Engineering for Non-Techs
      • ๐ŸŽญChapter 1 : Digital Identities
        • What is identity?
        • Authentication Flows
        • Authentication vs. Authorization
        • OAuth 2.0
        • OpenID Connect (OIDC)
        • Self Sovereign Identities
        • Decentralized Identifiers
        • eIDAS
      • ๐Ÿ‘๏ธโ€๐Ÿ—จ๏ธChapter 2 : De-Identification
        • Introduction to De-Identification?
        • Input / Output Privacy
        • De-identification Strategies
        • K-Anonymity
        • Differential Privacy
        • Privacy Threat Modeling
  • ๐Ÿ“–HGPE Story and Lore
    • ๐ŸชฆChapter 1 : The Prologue
    • โ˜„๏ธChapter 2 : Battle for Earth
    • ๐Ÿฆ Chapter 3 : A Nightmare To Remember
    • ๐Ÿง™โ€โ™‚๏ธChapter 4 : The Academy
    • ๐ŸŒƒChapter 5: The Approaching Darkness
    • โš”๏ธChapter 6 : The Invasion
    • ๐ŸฐChapter 7 : The Fall of the Academy
    • ๐Ÿ›ฉ๏ธChapter 8 : The Escape
    • ๐ŸชChapter 9 : The Moon Cave
    • ๐Ÿฆ‡Chapter 10: Queen of Darkness
  • ๐Ÿ“บVideos, Audio Book and Soundtracks
    • ๐ŸŽงReading Episodes
    • ๐ŸŽนSoundtracks
  • ๐Ÿ‘พHGPE Privacy Games and Challenges
    • ๐ŸŽฎData Privacy Day'23 / Privacy Treasure Hunt Game
    • ๐ŸงฉPrivacy Quest
  • ๐Ÿ“ฌSubscribe Now!
Powered by GitBook
On this page

Was this helpful?

  1. Privacy Engineering Field Guide Season 1
  2. Chapter 1 : How Computers Work?

Computer Code

Bits together coupled in meaningful ways become bytes, which are then used in the binary, the most native "machine language" to tell computers to get things done.

PreviousOperating System (OS)NextProgramming Languages

Last updated 2 years ago

Was this helpful?

What is computer code?

A code is something that tells the bits how to assign meaning to themselves. I would definitely suggest checking out course to better understand these concepts.

Here is a code for a program in , which iterates the integers from 1 to 50. For multiples of three print "Bip" instead of the number and for multiples of five print "Bop". For numbers that are multiples of both three and five print "Bipbop".

for bipbop in range(51)
    if bipbop % 3 == 0 and bipbop % 5 == 0:
        print("bipbop")
        continue
    elif bipbop % 3 == 0:
        print("bip")
        continue
    elif bipbop % 5 == 0:
        print("bop")
        continue
    print(bipbop):

The bit does not contain any meaning in and of itself; there is no room in a bit for anything other than the presence or absence of electricity. Meaning is assigned to a bit by something external to the bit.

So think of it as 0 for "no electricity" and 1 for "yes electricity" and hence now you have all you need to form a common language with the computer's hardware and software.

Bits together coupled in meaningful ways become bytes, which are then used in the binary, the most native "machine language" to tell computers to get things done.

You can even write a program that turns humans into cyborg space zombies thanks to the advancements in neurotechnologies.

๐ŸŽ“
โšก
Harvard's CS50
Python
Cyborgs are not physically invincible. They can be injured and even killed by any number of things that can kill humans such as guns, explosions, or any variety of PETs. However, upgraded cyborgs significantly proved to be even more serious threats to all other privacy engineers. - Journals of Order of Epoch, 2435
Page cover image