๐ŸŒŒ
Privacy Village Academy
Join The Community!AcademyAbout HGPE
  • Hitchhiker's Guide to Privacy Engineering
    • โ“What is HGPE?
      • โš–๏ธWho is this for?
      • ๐Ÿง™โ€โ™‚๏ธPrivacy Engineering
      • ๐ŸŽจCreative Privacy
      • ๐Ÿ”ฎGenerative AI
      • ๐Ÿง‘โ€๐Ÿ’ปAbout the Author
  • ๐Ÿง™โ€โ™‚๏ธThe Ethical AI Governance Playbook 2025 Edition
    • ๐Ÿค–Chapter 1 : AI Literacy
    • ๐ŸŒChapter 2 : AI Governance in the 21st Century
    • โŒ›Chapter 3 - Getting Started with AI Act Compliance
    • ๐Ÿš€Chapter 4 : Rise of AI Governance: Building Ethical & Compliant AI
    • Chapter 5 : Introduction to the Lifecycle of AI
  • ๐ŸŽ“Privacy Engineering Field Guide Season 1
    • โ“Decoding the Digital World: Exploring Everyday Technology
    • ๐Ÿ‘๏ธIntroduction: Why Privacy Matters?
      • Age of Mass Surveillance
      • Privacy & Democracy
      • Privacy & Government Surveillance
    • โšกChapter 1 : How Computers Work?
      • Electricity
      • Bits
      • Logic Gates
      • Central Processing Unit (CPU)
      • Graphic Processing Unit (GPU)
      • Motherboard
      • Data Storage
      • Databases
      • Operating System (OS)
      • Computer Code
      • Programming Languages
      • The File System
      • Bugs and Errors
      • Computer Virus
      • Internet of Things (IoT)
      • Cloud Computing
    • ๐Ÿ›ฐ๏ธChapter 2 : How the internet works?
      • Physical Infrastructure
      • Network and Protocols
      • Switch
      • Routers
      • IP Address
      • Domain Name System (DNS)
      • Mac Address
      • TCP / IP
      • OSI Model
      • Packets
      • The Client - Server Architecture
      • Secure Socket Shell (SSH)
      • Transport Layer Security (TLS)
      • Firewall
      • Tunnels and VPNs
      • Proxy Server
    • ๐Ÿ–ฅ๏ธChapter 3 : How Websites Work?
      • HTML
      • CSS
      • Javascript
      • Web Server
      • Browser
      • HTTP
      • Databases
      • Front End (Client Side)
      • Back End (Server Side)
      • Cookies
      • Local Storage
      • Session Storage
      • IndexedDB
      • XHR Requests
      • Web APIs
      • Webhooks
      • Email Server
      • HTTPS
      • Web Application Firewall
      • Single Sign-on (SS0)
      • OAuth 2.0
      • Pixels
      • Canvas Fingerprinting
      • Email Tracking
      • Containers
      • CI/CD
      • Kubernetes
      • Serverless Architecture
    • โš›๏ธChapter 4 : How Quantum Computers Work?
      • Quantum Properties
      • Quantum Bits (Qubits)
      • Decoherence
      • Quantum Circuits
      • Quantum Algorithms
      • Quantum Sensing
      • Post-Quantum Cryptography
    • ๐Ÿ“ณChapter 5 : Mobile Apps and Privacy
      • Battery
      • Processor
      • Mobile Operating Systems
      • Mobile Data Storage
      • Cellular Data
      • Mobile Device Sensors
      • Wireless Connectivity
      • Camera & Microphone
      • Mobile Apps
      • Software Development Kits (SDKs)
      • Mobile Device Identifiers
      • Bring Your Own Device (BYOD)
  • ๐Ÿ•ต๏ธโ€โ™‚๏ธPrivacy Engineering Field Guide Season 2
    • โ“Introduction to Privacy Engineering for Non-Techs
      • ๐ŸŽญChapter 1 : Digital Identities
        • What is identity?
        • Authentication Flows
        • Authentication vs. Authorization
        • OAuth 2.0
        • OpenID Connect (OIDC)
        • Self Sovereign Identities
        • Decentralized Identifiers
        • eIDAS
      • ๐Ÿ‘๏ธโ€๐Ÿ—จ๏ธChapter 2 : De-Identification
        • Introduction to De-Identification?
        • Input / Output Privacy
        • De-identification Strategies
        • K-Anonymity
        • Differential Privacy
        • Privacy Threat Modeling
  • ๐Ÿ“–HGPE Story and Lore
    • ๐ŸชฆChapter 1 : The Prologue
    • โ˜„๏ธChapter 2 : Battle for Earth
    • ๐Ÿฆ Chapter 3 : A Nightmare To Remember
    • ๐Ÿง™โ€โ™‚๏ธChapter 4 : The Academy
    • ๐ŸŒƒChapter 5: The Approaching Darkness
    • โš”๏ธChapter 6 : The Invasion
    • ๐ŸฐChapter 7 : The Fall of the Academy
    • ๐Ÿ›ฉ๏ธChapter 8 : The Escape
    • ๐ŸชChapter 9 : The Moon Cave
    • ๐Ÿฆ‡Chapter 10: Queen of Darkness
  • ๐Ÿ“บVideos, Audio Book and Soundtracks
    • ๐ŸŽงReading Episodes
    • ๐ŸŽนSoundtracks
  • ๐Ÿ‘พHGPE Privacy Games and Challenges
    • ๐ŸŽฎData Privacy Day'23 / Privacy Treasure Hunt Game
    • ๐ŸงฉPrivacy Quest
  • ๐Ÿ“ฌSubscribe Now!
Powered by GitBook
On this page
  • What is a Quantum Algorithm?
  • Grover's Algorithm
  • Shor's Algorithm

Was this helpful?

  1. Privacy Engineering Field Guide Season 1
  2. Chapter 4 : How Quantum Computers Work?

Quantum Algorithms

PreviousQuantum CircuitsNextQuantum Sensing

Last updated 2 years ago

Was this helpful?

What is a Quantum Algorithm?

Quantum computers use quantum algorithms to outperform traditional computers and they can solve some problems significantly faster than classical algorithms.

They're a set of instructions that tell a quantum computer how to manipulate qubits in a specific way to solve a problem faster than any classical computer could.

Cryptography, search and optimization, quantum system modeling, and solving huge systems of linear equations are all areas where quantum methods can be used.

Grover's Algorithm

Grover's algorithm is a quantum algorithm for searching an unsorted database.

Grover's algorithm can also be used for estimating the mean and median of a set of numbers, and for solving the collision problem. In addition, it can be used to solve NP-complete problems by performing exhaustive searches over the set of possible solutions.

Shor's Algorithm

Shor's algorithm is a quantum computer algorithm for finding the prime factors of an integer.

Shorโ€™s algorithm only gives the right answer 50% of the time. RSA and ECC are vulnerable to attacks by quantum computers.

As RSA relies on the hard problem of factoring numbers.

Multiplying two prime numbers together is easy, but taking a large number and factoring it in to get those two prime numbers is difficult.

Shorโ€™s algorithm can find the prime factors of a number and can โ€undoโ€ this factoring problem much more easily than a classical computer.

However, it would take about 10 million physical and 10,000 logical qubit quantum computers would be needed to break an RSA key.

Considering Google's quantum supremacy claim was achieved with only 53 qubits, it's safe to say that we are still pretty far away from that.

๐ŸŽ“
โš›๏ธ
As they moved deeper into the lab, they encountered new, terrifying mutations, more grotesque and horrifying than anything they had ever seen before. But Red and Kyle fought on, determined to save Ray and put an end to Lilith's twisted experiments.
Page cover image